

Timothy Canham

NASA Mars Helicopter Page:

https://www.jpl.nasa.gov/news/news.php?feature=7121

Conditions at Mars

Long distance from Earth

Thin atmosphere (<1% of Earth's)

Cold Martian nights $(\sim -90^{\circ}C)$

Need self-sufficient solar power system

Anatomy of Mars Helicopter

√ Total Mass < 1.8 Kg
</p>

√ Rotor Speed: 1900-2800 RPM

/ Blade Tip Mach Number: < 0.7

Avionics Processing

Batteries

Autonomous flight control algorithms

Built and Tested "Flight Model" Mars Helicopter

Mars Helicopter Avionics Design

- The helicopter avionics needs to be light-weight, powerful, and low power.
 - □ 500Hz guidance loops
 - □ 30Hz vision-based navigation
- Current radiation-tolerant hardware is too bulky and does not have computing power needed
 - BAE RAD750 ~200 DMIPS
- Choice was made to mix Commercial Off The Shelf (COTS) parts with some core radiation tolerant logic
 - □ RAD-Hard FPGA is the cop of the system
 - Provides clocks, core power management and watchdogs
 - Interfaces with sensors and motor system
 - □ Automotive grade microcontroller has responsibility for maintaining flight control (FC)
 - Fast microcontroller (~400DMIPS)
 - Dual lockstep processor can detect hardware faults
 - Redundant copies can fail over
 - □ Cell-phone grade ARM Linux processor does navigation, telecom, imaging and command/telemetry processing (NAV)
 - Very fast (~30,000 DMIPS)
 - Lots of memory
 - Not as robust as other parts
 - ☐ Cell-phone grade cameras for navigation and pictures
 - VGA gray-scale navigation
 - 13MP color camera for pictures

BAE RAD750

Texas Instruments TMS570

Snapdragon 801

Helicopter Elements on Rover

Mars Helicopter Avionics Design

Two major elements to the system:
Helicopter Flying vehicle Solar-powered 1-2 minute flights NAV processor does command, telemetry, and radio functions, power/thermal management, feature tracking and "outer" guidance loop 500Hz guidance, 30Hz tracking Linux OS FC processor does "inner" guidance loop, flight attitude control, motor control and high-rate telemetry 500Hz guidance and control 6 "Bare Metal", no OS
Helicopter Base Station □ Permanently installed on rover □ Communicates with helicopter via radio after deployment □ Communicates with rover processor for commanding and data □ Performs battery charging prior to helicopter deployment

Mars Helicopter Avionics Design Block Diagram

Mars Helicopter Base Station (HBS) Avionics Design Block Diagram

Radio to Mars Helicopter

Mars Helicopter Flight Software

- Smaller software team, shorter schedule
 - □ No time to write software from scratch
 - □ Needed a reliable code base
 - ☐ Flexible architecture for multiple test configurations
 - Different test configurations for different venues
- Chose F Prime flight software architecture
 - □ JPL developed, but open sourced on NASA GitHub
 - ohttps://github.com/nasa/fprime
 - ☐ Used on previous projects at JPL
 - RapidScat
 - Asteria
 - □ Planned future missions
 - NeaScout/Lunar Flashlight
 - Future smallsat/instrument Leon4 platform
 - □ Collaboration with university CubeSat projects
 - ☐ Helicopter reused many infrastructure components from previous projects
- © 2019 California Institute of Technology. Government sponsorship acknowledged.

F Prime Architecture

- F Prime is a component architecture
- Software is composed of components (behaviors) and ports (interfaces between components)
- Components are interconnect together to form topologies, which comprise the binary built as a deployment.
- Components are not link dependent on other components, so they can be easily recombined to form alternate topologies.
- Mars Helicopter had 11 different deployments for various test venues and ground support applications.

F Prime Architecture

- Serializables
 - □ Data types to pass between components
- Port attributes
 - □ Interface type
 - ☐ Types passed to callee
 - □ Optional types returned
- Component Attributes
 - ☐ Threading model
 - Message Queues
 - ☐ Ground interfaces
 - Telem, Cmds,Parameters
 - Member ports
 - Sync, Async, Guarded

Developer Written Implementation Class

F Prime Development Process

- Define components and interfaces in XML
 - □ Code generation for boiler-plate code
 - Tasks, messages, commands and telemetry
- Developer writes C++ derived classes to implement component logic
- Generate unit test code to test component
 - □ Code generator generates component test harness
- Software lead assemblies components into the topology
- System can be run with an included ground system with a python test API

Mars Helicopter Flight Software Components

Fprime
Common

Heli
Shared

Heli
Unique

HBS
Unique

Summary

- The use of COTS hardware allowed quick implementation of a compact, powerful avionics packet with a backstop of reliable flight parts
- We were able to achieve impressive performance that would not have been possible with conventional flight hardware
- The use of F Prime allowed us to leverage work done by other projects to mature the core components of the system
- The flexibility of F Prime allowed us support a number of venues and functions
- F Prime is available as open source
 - ☐ You too can fly code flown by the helicopter!
- Questions?

References

- BAE RAD750 https://bit.ly/2JFgM6T
- Texas Instruments TMS570 https://bit.ly/2Yqhn02
- Garmin Altimeter https://bit.ly/2xmh1M8
- Bosch IMU https://bit.ly/2wBD2bn
- JPL F Prime Framework https://bit.ly/2XD31fl
- Mars Helicopter https://go.nasa.gov/2lybl3e